0

Full Content is available to subscribers

Subscribe/Learn More  >

Radioactive Spent Resins Conditioning by the Hot Super-Compaction Process

[+] Author Affiliations
Andreas Roth

Hansa Projekt Anlagentechnik GmbH, Hamburg, Germany

Baudouin Centner

Tractebel Engineering, Belgium

Alain Lemmens

Electrabel, Belgium

Paper No. ICEM2007-7310, pp. 687-693; 7 pages
doi:10.1115/ICEM2007-7310
From:
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME

abstract

Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of resins) is achievable using hot compaction techniques. This paper will describe the application of the Resin Hot Compaction Process, at Tihange NPP.

Copyright © 2007 by ASME
Topics: Compacting , Resins

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In