0

Full Content is available to subscribers

Subscribe/Learn More  >

Characteristics of Solidified Products Containing Radioactive Molten Salt Waste

[+] Author Affiliations
In-Tae Kim, Hwan-Seo Park, Yong-Zun Cho, Kwang-Wook Kim, Seong-Won Park, Eung-Ho Kim

Korea Atomic Energy Research Institute, Daejeon, South Korea

Paper No. ICEM2007-7303, pp. 315-319; 5 pages
doi:10.1115/ICEM2007-7303
From:
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME

abstract

For a treatment of molten salt wastes generated from a pyroprocessing of oxide spent fuel, we had suggested a stable chemical route, named GRSS (Gel-Route Stabilization & Solidification), and a subsequent consolidation method. By using this method, a series of monolithic wasteforms with different conditions were fabricated, and then their physicochemical properties were investigated. A simulated salt containing 90wt% LiCl, 6.8wt% CsCl, and 3.2wt% SrCl2 was treated with a gel-forming material system, Si/Al/P = 0.4/0.4/0.2 and 0.35/0.35/0.3, and the gel-products were treated at 1100C° after mixing with borosilicate glass powder, where the salt loadings were about 16∼20wt%. The solidified products had a density of 2.3∼2.35g/cm3 , a micro-hardness of 4.69∼4.72GPa, a glass transition temperature of 528∼537C°, and a thermal expansion coefficient of 1.65×10−7 ∼3.38×10−5 /C°. Leaching results by the PCT-A method revealed leached rates, 10−3 ∼10−2 g/m2 day and 10−4 ∼10−3 g/m2 day for Cs and Sr, respectively. From the long-term ISO leaching test, the 900day-leached fraction of Cs and Sr predicted by a semi-empirical model were 0.89% and 0.39%. The leaching behaviors indicated that Cs would be immobilized into a Si-rich phase while Sr would be in a P-rich phase. The experimental results revealed that the GRSS method could be an alternative method for a solidification of radioactive molten salt wastes.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In