0

Full Content is available to subscribers

Subscribe/Learn More  >

Shakedown During Fatigue of Residual Stresses Introduced by Different Mechanical Surface Treatments

[+] Author Affiliations
Christopher M. Gill, Philip J. Withers, Alex Evans

Manchester University, Manchester, UK

Neil Fox

Rolls-Royce plc, Derby, UK

Koichi Akita

Musashi Institute of Technology, Japan

Paper No. PVP2006-ICPVT-11-93697, pp. 203-207; 5 pages
doi:10.1115/PVP2006-ICPVT-11-93697
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 7: Operations, Applications, and Components
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4758-6 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

A layer of compressive residual stress extending from the surface of a component can help to extend fatigue life, but it must remain stable during applied service loading. Metal shot and glass bead peening are traditionally used; introducing a shallow (100–300μm) layer of compressive residual stress and a highly cold worked surface. Laser peening and deep rolling are capable of introducing much deeper compressive residual stresses combined with lower levels of cold work. In this paper we report on the level of shakedown of residual stress brought about by constant strain amplitude fatigue. Glass and metal shot peened, laser peened and deep rolled Ti-6Al-4V samples have been studied. The residual stress profiles as a function of depth have been measured using neutron diffraction, laboratory x-ray diffraction and a hybrid hole-drilling/laboratory x-ray diffraction method. The magnitude and depth of cold work determined for each of the treatment methods. The extent of subsequent residual stress shakedown under different strain amplitudes and load ratios, in deep rolled, glass bead and metal shot peened samples is also assessed.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In