Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Laser Parameters on Residual Stress Field of AISI 304 Stainless Steel Induced by Laser Peening: A Finite Element Analysis

[+] Author Affiliations
Xiang Ling, Weiwei Peng

Nanjing University of Technology, Nanjing, Jiangsu, China

Paper No. PVP2006-ICPVT-11-93097, pp. 169-177; 9 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 7: Operations, Applications, and Components
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4758-6 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


The present paper established a non-linear elastic-plastic finite element method to predict the residual compressive stress distribution induced by Laser Peening (LP) in the AISI 304 stainless steel. The two dimensional FEA model considered the dynamic material properties at high strain rate (106 /s) and the evaluation of loading conditions. Effects of laser power density, laser spot size, laser pulse duration, multiple LP processes and one/two-sided peening on the compressive stress field in the stainless steel were evaluated for the purpose of optimizing the process. Numerical results have a good agreement with the measurement values by X-ray diffraction method and also show that the magnitude of compressive stress induced by laser peening is greater than the tensile welding residual stress. So, laser peening is an effective method for protecting weldments against stress corrosion crack. The above results provide the basis for studying the mechanism on prevention of stress corrosion cracking in weld joint of type 304 stainless steel by laser peening.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In