0

Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Irradiation Embrittlement in the Ductile to Brittle Transition Range for an A508 Pressure Vessel Steel

[+] Author Affiliations
B. Tanguy, J. Besson

UMR CNRS, Evry Cedex, France

S. Bugat

EDF les Renardières, Moret-sur-Loing, France

Paper No. PVP2006-ICPVT-11-93400, pp. 99-106; 8 pages
doi:10.1115/PVP2006-ICPVT-11-93400
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 7: Operations, Applications, and Components
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4758-6 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

The aging behavior of structural steels used to manufacture nuclear pressure vessels is surveyed using Charpy V-notch specimens located in capsules inside the pressure vessel. The Charpy data are then used to assess the safety integrity of the structures based on semi-empirical relations relating Charpy impact transition curve shifts and the fracture toughness shifts due to irradiation. Using a computational strategy proposed in [1] which combines a deterministic model for ductile fracture and a statistical description of brittle fracture, this work aims at the prediction of the whole Charpy transition curve of irradiated steels. The actual strain hardening behavior of an A508 Cl.3 steel from the french surveillance program is considered in the simulations, contrarily to a previous work where a shift of the un-irradiated stress-strain curve to higher stress values was considered. Comparison with Charpy energy data for two levels of irradiation shows that irradiation possibly also affect brittle fracture. It is also shown that if a low increase of the yield stress is considered, the ductile fracture energy can decrease as a result of a compensation between the increase of dissipated energy due to a higher yield stress and a decrease of dissipated energy due to a faster ductile crack propagation.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In