0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Dynamically Loaded Open-Cell Metallic Foams

[+] Author Affiliations
Pedro A. Romero, Alberto M. Cuitiño

Rutgers University, Piscataway, NJ

Paper No. IMECE2007-41906, pp. 71-76; 6 pages
doi:10.1115/IMECE2007-41906
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 12: New Developments in Simulation Methods and Software for Engineering Applications
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4306-8 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

Heterogeneous cellular materials such as metallic and polymeric open-celled foams are preferable in many engineering applications requiring mitigation of energy during sudden impact loading. This brief communication presents an approach for modeling dynamically loaded open-cell metallic foams. It is implicitly assumed that there exists a length scale separation where the microstructural dimensions are much smaller than the macroscopic dimensions. In this context, a macroscopic point translates into a microscopic array of identical unit cells sharing the same macroscopic fields. Dictated by a model for the metallic cell wall constitutive behavior, the effective unit cell response is then obtained from a structural micromechanical model which enforces the principle of minimum action on a representative 3D unit cell. The effective macroscopic response at every node in the FEM mesh (equilibrium, stresses, stress tangents) is then provided by the unit cell microscopic model. The present theory allows one to define a constitutive formulation for lightweight, open-celled foams based on clear and quantifiable parameters such as microstructural topology and ligament properties while capturing the effects of dynamic loading via viscous dissipation at ligament level and microinertia at unit cell level. History of deformation is considered at ligament level while axial and bending deformation are considered at unit cell level. As observed experimentally, the resulting macroscopic FEM simulations clearly demonstrate how the material undergoes heterogeneous deformation during cellular structure collapse.

Copyright © 2007 by ASME
Topics: Modeling , Metal foams

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In