Full Content is available to subscribers

Subscribe/Learn More  >

Multiple Time-Scale Molecular Simulations: Modeling Realistic Loading Rates

[+] Author Affiliations
S. N. Medyanik, E. Guleryuz

Washington State University, Pullman, WA

Paper No. IMECE2007-41286, pp. 41-42; 2 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 12: New Developments in Simulation Methods and Software for Engineering Applications
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4306-8 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


The vast gap between the molecular dynamics (MD) and experimental time scales poses serious problems to direct comparison between the MD simulation and experimental results. The inability of the traditional MD simulation methods to model long enough time scales also results in modeling unrealistically high loading rates and strain rates that are usually at least six or seven orders of magnitude higher than the corresponding experimental values. This may have a tremendous effect on the realism and quality of the simulation results.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In