Full Content is available to subscribers

Subscribe/Learn More  >

On the Use of a Woven Mat to Control the Crack Path in Composite Sandwich Specimens With Foam Core

[+] Author Affiliations
Christian Lundsgaard-Larsen, Christian Berggreen

Technical University of Denmark, Lyngby, Denmark

Leif A. Carlsson

Florida Atlantic University, Boca Raton, FL

Paper No. IMECE2007-42605, pp. 975-976; 2 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


In the last couple of decades the use of sandwich structures has increased tremendously in applications where low weight is of importance e.g. ship structures, where sandwich panels are often built from fiber reinforced faces and foam cores. An important damage type in sandwich structures is separation of face and core (debonding). Debonds can arise as a result of defects from production when an area between face and core has not been primed sufficiently resulting in a lack of adhesion. In use, impact loading, e.g. due to collision with objects, can result in formation of a debond crack, followed by growth due to continued loading. With debonds present the structure might fail under loads significantly lower than those for an intact sandwich structure [1, 2]. A debond crack in a foam cored sandwich can propagate self similarly or kink away from the interface into either the face or core. Whether or not kinking occurs is governed by the stress state at the crack tip, e.g. described by the mode-mixity of the complex stress intensity factor and the properties of the face, core and adhesive [3]. The criticality of an existing crack can be highly dependent on the crack propagation path, since the fracture toughness of the face, core and interface are often very different. As the crack propagates in the interface or laminate the fibers in the face laminate can form a bridging zone behind the crack tip. This can increase the fracture toughness significantly since the bridging fibers provide closing tractions between the separated crack surfaces [4, 5]. The outline of a crack propagating under large scale bridging in a sandwich structure can be seen in Figure 1.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In