0

Full Content is available to subscribers

Subscribe/Learn More  >

Studies on Blood Rheology in a Coronary Artery Using CFD Technique With an AE Sensor

[+] Author Affiliations
Yong Hyun Kim, Goddy Chungag, Joon Sang Lee, Emmanuel Ayorinde, Xin Wu

Wayne State University, Detroit, MI

Paper No. IMECE2007-43431, pp. 955-964; 10 pages
doi:10.1115/IMECE2007-43431
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

There still exists a need for developing more accurate generalized models for multiscale biofluids systems that enable clearer understanding of normal microcirculation and complexities of disease hemorheology. Such work will yield enhanced computational and experimental techniques for a wider class of flows having fluid-solid interactions, complex moving boundaries, and involving red blood cell (RBC) aggregation under physiological conditions. The work reported here has involved the multiphase non-Newtonian fluid simulations of pulsatile flow in an idealized coronary artery model have been performed using numerical and experimental studies. The secondary flow affected a local RBC accumulation on the inside curvature and it changed the local flow characteristics as well. RBC viscosity and wall shear stress (WSS) were changed with a function of local hemotocrit. In practical work involving specialized velocity measurement and acoustic emission monitoring of flow characteristics, flow-induced vibration effects, as well as material and physiological aspects of arterial systems were conducted. Computations of arterial flows were made and experimental investigations using glass microtube simulations of arteries were carried out. This work contributes to an understanding of the mechanics of relationship between the progression of certain inherited diseases and the mechanical deformation characteristics of the arterial system and the RBC.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In