0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis on the Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wires

[+] Author Affiliations
H. K. Cho

Korea Advanced Institute of Science and Technology, Daejeon, Korea

Paper No. IMECE2007-41860, pp. 847-854; 8 pages
doi:10.1115/IMECE2007-41860
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

Motivated by needs such as those in the aerospace industry, this paper demonstrates the thermomechanical characteristics of static and dynamic (frequency) behaviors of laminated composite shells with embedded shape memory alloy (SMA) wire subjected to temperature environments. Numerical analysis for SMA fiber reinforced composite laminates is performed by synergizing finite element method with Brison’s model [1,2] of SMA constitutive law. A nonlinear finite element procedure with respect to shape memory alloy hybrid composite (SMAHC) shell has been developed which incorporates a thermodynamically derived constitutive law for SMA behavior. Present illustrative applications involve rectangular laminated panels clamped along one side, although the method is applicable to more complicated laminates, geometries and boundary conditions. Panel geometry is discretized into specially-developed 3D degenerated eight-node laminated composite shell elements. General shell theory, involving incremental nonlinear finite element equilibrium that includes large deformations with Green-Lagrange strains, is employed. Several test cases which depend on volume fraction of SMA, temperature and ply angles are presented to illustrate the thermomechanical behavior of SMAHC. The results of numerical analysis show the ability of the suggested procedure to compute the thermomechanical behavior of SMAHC due to SMA’s internal phase transformations with stress and temperature.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In