0

Full Content is available to subscribers

Subscribe/Learn More  >

Coupling Particle to Continuum Regions of Particulate Materials

[+] Author Affiliations
Richard A. Regueiro

University of Colorado at Boulder, Boulder, CO

Paper No. IMECE2007-42717, pp. 501-507; 7 pages
doi:10.1115/IMECE2007-42717
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

Following atomistic-continuum coupling methods for lattice-structured materials [1, 2], a method for coupling particle to continuum regions of particulate materials is presented. The particle region is modeled using particle mechanics and the discrete element method, whereas the continuum region is modeled using linear micropolar elasticity and the finite element method. The formulation for coupling particle and continuum degrees of freedom as well as partitioning kinetic and potential energies in the overlapping domain is presented. Details of the numerical implementation and numerical examples will follow in a forthcoming paper. The method is developed to model particulate materials at their physical length scale (particle size) in regions of large relative particle motion in a computationally tractable manner.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In