0

Full Content is available to subscribers

Subscribe/Learn More  >

Building-Integrated Thermoelectrics as Active Insulators and Heat Pumps

[+] Author Affiliations
Leon M. Headings, Gregory N. Washington

Ohio State University, Columbus, OH

Paper No. IMECE2007-43122, pp. 269-278; 10 pages
doi:10.1115/IMECE2007-43122
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

Heating, ventilation, and air conditioning (HVAC) accounts for 40% to 60% of residential and commercial building energy consumption, making this a critical component of energy usage in the face of rising energy prices. Building-integrated thermoelectrics (BITE) may provide a step towards adaptive homes and buildings that offer significantly improved efficiency and comfort. Integrating thermoelectrics into thermal mass and resistance (insulation) wall systems presents a fundamental shift from optimizing heating and cooling source efficiencies and minimizing building-envelope energy losses to a new regime where an active envelope is optimized to most efficiently eliminate those losses. This approach not only offers improved energy efficiency, but improves the uniformity and consistency of temperature, eliminates the need for all other heating and air conditioning equipment including thermal energy transport, and provides the platform for adaptive zone heating and cooling which can provide additional efficiency gains. Because of the solid-state nature of thermoelectrics, such a system would be reliable, low maintenance, silent, and clean. This paper examines various wall configurations and sizing for thermal mass, resistance, and thermoelectric components. A dynamic simulation is used to demonstrate how proper system design of thermal resistance and capacitance elements with existing thermoelectric materials may improve the typically low coefficient of performance of thermoelectric devices, making it competitive with traditional building systems. The results for different wall configurations are shown as a basis for future configuration design and optimization.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In