Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Thermal-Hydraulic Loads on Reactor Internals in a DBA-Situation

[+] Author Affiliations
Ville Lestinen, Timo Toppila

Fortum Nuclear Services, Ltd., Espoo, Finland

Antti Timperi, Timo Pättikangas, Markku Hänninen

VTT, Finland

Paper No. PVP2006-ICPVT-11-93456, pp. 1539-1548; 10 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


According to Finnish regulatory requirements, reactor internals have to stay intact in design basis accident (DBA) situations, so that control rods can always penetrate into the core. This is the basic motivation to study and develop more detailed methods for analyses of thermal-hydraulic loads on reactor internals during the DBA situation in the Loviisa Nuclear Power Plant (NPP) in Finland. In this work, the studied accident situation is Large Break Loss of Coolant Accident (LBLOCA). The objective of this work is to connect thermal-hydraulic and mechanical analysis methods with the goal to produce a reliable method for determination of thermal-hydraulic and mechanical loads on reactor internals in the accident situation. In the present model, the downcomer of a PWR is only included and the reactor internals will be added later. The tools studied are thermal-hydraulic system codes, computational fluid dynamics (CFD) codes and finite element analysis (FEA) codes. Both thermal-hydraulic and mechanical aspects are discussed in this paper. Firstly, the pressure boundary condition in the pipe break point was calculated with the system code. In the second step, CFD analyses were made. Finally, the full fluid-structure interaction coupling between the CFD and FEA codes was used. The codes used for development and simulations are APROS system code for boundary condition calculations, STAR-CD and FLUENT for CFD calculations and ABAQUS for FEA calculations.

Copyright © 2006 by ASME
Topics: Stress



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In