0

Full Content is available to subscribers

Subscribe/Learn More  >

Microscale Fluid Flow at Rough Metallic Surfaces: A Lattice Boltzmann Study

[+] Author Affiliations
F. Varnik, D. Raabe

Max-Planck Institut für Eisenforschung GmbH, Düsseldorf, Germany

Paper No. PVP2006-ICPVT-11-93405, pp. 1529-1538; 10 pages
doi:10.1115/PVP2006-ICPVT-11-93405
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

In contradiction with common assumptions of a laminar lubricant flow, it is shown that high Reynolds number lubricant flows may occur in usual metal forming processes even at scales as small as the surface roughness asperities. This enhances the sensitivity of the flow to perturbations arising e.g. from the surface roughness and brings about the possibility of a roughness-induced transition toward an unsteady flow/turbulence. Via lattice Boltzmann simulations, it is shown that, under these circumstances, a qualitative change in flow properties may indeed be triggered by a variation of the wall roughness alone. We focus on the impact of various roughness parameters on the transition showing that it is not the roughness height alone which determines the onset of flow instability. Rather, it is the combined effect of the roughness height- and wave length which is essential. In particular, by an increase of the roughness wave length, it is possible to trigger flow instability even if the roughness slope is reduced. These findings are in line with experimental results on rough wall turbulence which indicate that a local Reynolds number based on the roughness height alone does not capture the roughness effects on the flow characteristics.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In