Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Hydrodynamic Load in a Water Pool When Discharged Air Forms a Bubble Cloud

[+] Author Affiliations
Ken Uchida, Seijiro Suzuki

Toshiba Corporation, Yokohama, Japan

Paper No. PVP2006-ICPVT-11-93281, pp. 1499-1509; 11 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


This paper presents a numerical and qualitative study on the expected hydrodynamic load-reducing effect of bubbly media near a volumetrically oscillating bubble. In this study, the bubble or bubble cloud is assumed to be spherically symmetric, and its motion is analyzed as a one-dimensional compressible two-phase flow in the radial direction in spherical coordinates. We adopted the CCUP (CIP-Combined Unified Procedure) method, which is a unified analysis method for both compressible and incompressible fluids proposed by Yabe et al. (1991) in order to treat interaction among gas, liquid, and two-phase media, and to avoid large numerical dissipation at density discontinuities. To verify the analysis program we developed, we analyzed free oscillations of a bubble with a unity void fraction and of a bubble cloud with an initial void fraction of 0.5, and found that the natural frequency from numerical results are well reproduced with an error of 0.9% for the bubble and 5% for the bubble cloud as compared to those obtained on a theoretical basis. Using this method, we analyzed the free oscillation of a bubble cloud in which a bubble with a unity void fraction is covered by a bubbly media layer with an initial void fraction of 0.5. Numerical results show that the amplitude of pressure oscillation inside the bubble is about halved, and that a higher mode of oscillation appears when a bubbly media layer covers the bubble. The measured results from a blowdown test we previously reported also shows a similar higher mode of oscillation. The amplitude of pressure oscillation in the water region was apparently reduced when a thick bubbly media layer covers the bubble. Thus, if the bubbly media is ejected from sparger holes prior to the ejection of a high-pressure bubble, the bubbly media might reduce the hydrodynamic load induced in a water pool made by volumetric oscillation of the bubble.

Copyright © 2006 by ASME
Topics: Stress , Bubbles , Water



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In