Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Multi-Directional Variable Stiffness Leg for Dynamic Running

[+] Author Affiliations
Kevin C. Galloway, Daniel E. Koditschek

University of Pennsylvania, Philadelphia, PA

Jonathan E. Clark

Florida A&M - Florida State University, Tallahassee, FL

Paper No. IMECE2007-41318, pp. 73-80; 8 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanics of Solids and Structures, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4304-1 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


Recent developments in dynamic legged locomotion have focused on encoding a substantial component of leg intelligence into passive compliant mechanisms. One of the limitations of this approach is reduced adaptability: the final leg mechanism usually performs optimally for a small range of conditions (i.e. a certain robot weight, terrain, speed, gait, and so forth). For many situations in which a small locomotion system experiences a change in any of these conditions, it is desirable to have a variable stiffness leg to tune the natural frequency of the system for effective gait control. In this paper, we present an overview of variable stiffness leg spring designs, and introduce a new approach specifically for autonomous dynamic legged locomotion. We introduce a simple leg model that captures the spatial compliance of the tunable leg in three dimensions. Lastly, we present the design and manufacture of the multi-directional variable stiffness legs, and experimentally validate their correspondence to the proposed model.

Copyright © 2007 by ASME
Topics: Design , Stiffness



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In