Full Content is available to subscribers

Subscribe/Learn More  >

Towards a Unified Solution Method for Fluid-Structure Interaction Problems: Progress and Challenges

[+] Author Affiliations
G. Papadakis

King’s College London, London, UK

C. G. Giannopapa

Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Paper No. PVP2006-ICPVT-11-93354, pp. 223-231; 9 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


The paper presents the progress in the development of a novel unified method for solving coupled fluid-structure interaction problems as well as the associated major challenges. The new approach is based on the fact that there are four fundamental equations in continuum mechanics: the continuity equation and the three momentum equations that describe Newton’s second law in three directions. These equations are valid for fluids and solids, the difference being in the constitutive relations that provide the internal stresses in the momentum equations: in solids the stress tensor is a function of the strain tensor while in fluids the viscous stress tensor depends on the rate of strain tensor. The equations are written in such a way that both media have the same unknown variables, namely the three velocity components and pressure. The same discretisation technique (finite volume) and solution method (segregated approach) are used irrespective of the medium. Also the same methodology to handle the pressure-velocity coupling is employed. A common set of variables as well as a unified discretisation and solution method leads to a strong coupling between the two media and is very beneficial for the robustness of the algorithm. Significant challenges include the derivation of consistent boundary conditions for the pressure equation in boundaries with prescribed traction as well as the handling of discontinuity of pressure at the fluid-structure interface.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In