0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Analysis of a PWR Core Internal Baffle Structure

[+] Author Affiliations
Christophe Péniguel, Isabelle Rupp

EDF R&D, Chatou, France

Nathalie Ligneau, Laurent Beloeil

EDF SEPTEN, Villeurbanne, France

Michel Tommy-Martin

EDF R&D, Clamart, France

Emmanuel Lemaire

EDF CAPE, Saint-Denis, France

Paper No. PVP2006-ICPVT-11-93299, pp. 173-182; 10 pages
doi:10.1115/PVP2006-ICPVT-11-93299
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

The internal core baffle structure of a PWR consists in baffles and formers attached to the barrel. Each baffle being independent, the connection between the core baffle sheets, the formers and the core barrel is done thanks to a large number of bolts (about 1500). After inspection, some baffle bolts have been found cracked. This behaviour is attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). In order to compute accurately the temperature distribution affecting these bolts, EDF has set up a research program. Due to symmetry reasons, only a 45° sector has been accounted for. The three-dimensionnal neutron flux and the gamma induced internal heating are calculated with a Monte-Carlo particle transport code named Tripoli-4. The by-pass flow inside the cavities is computed with the CFD code Code_Saturne with a finite volume technique. Finally, the temperature distribution inside the structure (including all bolts which leads to a considerable solid mesh size — about 236 millions tetraedra) is computed by the thermal code Syrthes using a finite element approach, taking into account both the heating due to the gamma heating deposit and the cooling by the by-pass flow. Calculations show that the solid thermal field obtained exhibit strong temperature gradients and high temperature levels but in very limited zones located inside the material. As expected mainly very limited regions located inside the material and near the corner close to the reactor center are exposed to high temperature levels. On the other hand, calculations clearly confirm that external bolts thightening the core barrel and the formers see temperature much lower than those thightening the baffles.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In