Full Content is available to subscribers

Subscribe/Learn More  >

Implicit Partitioned Fluid-Structure Interaction Coupling

[+] Author Affiliations
Michael Schäfer, Saim Yigit, Marcus Heck

Darmstadt University of Technology, Darmstadt, Germany

Paper No. PVP2006-ICPVT-11-93184, pp. 105-114; 10 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 4: Fluid Structure Interaction, Parts A and B
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4755-1 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


The paper deals with an implicit partitioned solution approach for the numerical simulation of fluid-structure interaction problems. The solution procedure involves the finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the coupling interface MpCCI. The method is verified and validated by comparisons with benchmark results and experimental data. Investigations concerning the influence of the grid movement technique and an underrelaxation on the performance of the method are presented.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In