0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Fatigue Appears to be More Damaging Than Uniaxial Isothermal Fatigue: A Complete Analysis of the Results Obtained on the CEA Thermal Fatigue Device Splash

[+] Author Affiliations
Antoine Fissolo, Ludovic Vincent, Stéphane Chapuliot

CEA Saclay, Gif sur Yvette, France

Sébastien Amiable, Andrei Constantinescu

École Polytechnique, Palaiseau, France

Jean Marc Stelmaszyk

Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France

Paper No. PVP2006-ICPVT-11-93658, pp. 535-544; 10 pages
doi:10.1115/PVP2006-ICPVT-11-93658
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 3: Design and Analysis
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4754-3 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

Thermal fatigue sometimes occurs in different types of nuclear reactor components. To estimate the crack initiation damage, uniaxial fatigue curves are often used. They were deduced from strain control tests using normalised cylindrical specimens. However, for in-service components, thermal loadings induce biaxial mechanical loadings. In that frame, the questioning of an eventual influence of the triaxiality factor on fatigue damage can be asked. To investigate differences between uniaxial fatigue damage and in service biaxial thermal fatigue damage, a campaign has been conducted on a specific thermal fatigue device (SPLASH). The specimen is continuously heated by Joule effect and cyclically cooled by a water spray. To deduce the thermo-mechanical state of the specimen, two uncoupled computations are performed: a thermal analysis and a mechanical analysis with the previous computed temperature field as a given loading parameter. All the computations have been performed using the object-oriented finite element code cast3M. All the analysed tests show clearly that initiation under thermal fatigue occurs before initiation under uniaxial isothermal fatigue: thermal fatigue is the most damaging case. Such difference is not due to difference on microscopic mechanisms for that temperature range. It results from a pure mechanical origin: a biaxial state corresponds to an increase of the hydrostatic stress.

Copyright © 2006 by ASME
Topics: Fatigue

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In