Full Content is available to subscribers

Subscribe/Learn More  >

Self-Powered Wireless Sensor Balls for Homeland Security

[+] Author Affiliations
Jaewook Yu, Woohyung Chun, Goldie Nejat, K. Wendy Tang

State University of New York at Stony Brook, Stony Brook, NY

Eric Noel

AT&T Laboratories, Middletown, NJ

Paper No. IMECE2007-42334, pp. 963-972; 10 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanical Systems and Control, Parts A, B, and C
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4303-3 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


In this paper, the development of affordable self-powered wireless sensor balls is proposed for environmental monitoring. Depending on the area of interest, multiple balls can be either thrown or rolled from a distance into the surrounding area of interest or placed beside the object of interest, and send sensory information back to a central base station, i.e., a laptop, for sensor fusion and processing. In order to achieve fast and robust deployment, reliable data delivery, and smart power management, the paper focuses on the potential wireless network and energy harvesting scheme of the balls. In particular, to support a large number of sensor balls, we show that shortest path routing is essential in minimizing network latency and guarantee timely delivery of critical and emergency information. Furthermore, a vibration-based electromagnetic energy harvesting technique is investigated to capture the energy from the motion of the balls. Experimental results demonstrate the potential development of a network of autonomous self-powered wireless sensor balls.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In