0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Motion Generation for Vision-Guided Robot Bin-Picking

[+] Author Affiliations
Simon Leonard, Ambrose Chan, Elizabeth Croft, James J. Little

University of British Columbia, Vancouver, BC, Canada

Paper No. IMECE2007-42606, pp. 651-658; 8 pages
doi:10.1115/IMECE2007-42606
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanical Systems and Control, Parts A, B, and C
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4303-3 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

This paper discusses work towards a vision-based solution to the problem of robot bin-picking. The problem of robot bin-picking is defined as searching for and recognizing a part among many lying jumbled in a bin such that the robot is able to grasp and manipulate the part. Despite decades of research in vision, robotics, and manufacturing, this problem remains open. Currently, in modern manufacturing, this seemingly simple task is performed by complex assembly lines or manual labor. The amount of efforts and costs associated with the current solutions to bin-picking is a testament to the importance of a new solution. The main objective of this research is a reliable and cost effective automated solution to the bin-picking problem encountered in manufacturing. As a broader contribution, this research also provides a robust visual servoing method that enables safe interactions between a robot and its environment. Our system uses visual feedback to generate tasks autonomously and to control the interaction of the manipulator with its environment. First, our system relies on robust vision-based object localization to generate three-dimensional pose hypotheses for each identified part. Then, the hypotheses are filtered according to the feasibility of their picking configuration. Finally, a trajectory is generated for a picking position. In this paper, we consider the specifications of the trajectory ensure that collisions with the bin and joints limits are avoided, while servoing the robot to the part. To ensure the reliability of the system, the procedure is tested in a simulation before being executed by a manipulator. Our experiments target the automotive industry and involve real engine parts a typical industrial robot and metal bin.

Copyright © 2007 by ASME
Topics: Motion , Robots

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In