0

Full Content is available to subscribers

Subscribe/Learn More  >

Particle Swarm Optimization (PSO) Fuzzy Systems and NARMAX Approaches Trade-Off Applied to Thermal-Vacuum Chamber Identification

[+] Author Affiliations
Ernesto Araujo, Ubiratan S. Freitas, Elbert A. N. Macau

National Institute for Space Research-INPE, São José Campos, SP, Brazil

Leandro S. Coelho

Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil

Luis A. Aguirre

Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil

Paper No. PVP2006-ICPVT-11-93631, pp. 403-410; 8 pages
doi:10.1115/PVP2006-ICPVT-11-93631
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 2: Computer Technology
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4753-5 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

Two nonlinear identification methods are employed in this paper in an experimental comparative approach to generate dynamical models for a thermal-vacuum system. Used for space environment emulation and satellite qualification, a thermal-vacuum chamber presents highly nonlinear and time-delay characteristics. While, in the first nonlinear identification approach, Particle Swarm Optimization (PSO) derive a Takagi-Sugeno fuzzy model, the second one was based on NARMAX polynomial identification technique. PSO is a stochastic global optimization technique that uses a population of particles, where the position and velocity of each particle represent a solution to the problem. It is employed as an auxiliary mechanism for finding out a T-S fuzzy model. The NARMAX polynomial identification technique uses a criterion called Error Reduction Ratio (ERR) computed by employing an orthogonal least squares method whose terms are selected in a forward-regression manner. Results indicate that both methods are feasible solutions for eliciting models from the available data.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In