Full Content is available to subscribers

Subscribe/Learn More  >

FE Modeling of the Orthotropic and Three-Layered Human Thoracic Aorta

[+] Author Affiliations
Aihong Zhao, Kennerly Digges, Cing-Dao Kan

George Washington University, Ashburn, VA

Ian Owens Pericevic, Moji Moatamedi

University of Salford, Manchester, UK

Jeffrey S. Augenstein

William Lehman Injury Research Center, Miami, FL

Paper No. PVP2006-ICPVT-11-93573, pp. 395-401; 7 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 2: Computer Technology
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4753-5 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


The human aorta consists of three layers: intima, media and adventitia from the inner to outer layer. Since aortic rupture of victims in vehicle crashes frequently occurs in the intima and the media, latent aortic injuries are difficult to detect at the crash scene or in the emergency room. It is necessary to develop a multi-layer aorta finite element (FE) model to identify and describe the potential mechanisms of injury in various impact modes. In this paper, a novel three-layer FE aortic model was created to study aortic ruptures under impact loading. The orthotropic material model [1] has been implemented into a user-defined material subroutine in the commercial dynamic finite element software LS-DYNA version 970 [2], which was adopted in the aorta FE model. The Arbitrary-Lagrangian Eulerian (ALE) approach was adopted to simulate the interaction between the fluid (blood) and the structure (aorta). Single element verifications for the user-defined subroutine were performed. The mechanical behaviors of aortic tissues under impact loading were simulated by the aorta FE model. The models successfully predicted the rupture of the layers separately. The results provide a basis for a more in-depth investigation of blunt traumatic aortic rupture (BTAR) in vehicle crashes.

Copyright © 2006 by ASME
Topics: Modeling , Aorta



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In