Full Content is available to subscribers

Subscribe/Learn More  >

Elastic-Plastic Limit Analysis for Perforated Plates With Triangular Array of Circular Holes

[+] Author Affiliations
Xinjian Duan, Arnaud Weck, David S. Wilkinson

McMaster University, Hamilton, ON, Canada

Paper No. PVP2006-ICPVT-11-93655, pp. 379-385; 7 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 2: Computer Technology
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4753-5 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


The plastic limit load design for a perforated structure that contains a large amount of circular holes has attracted much attention from power industry in recent years. Most of the previous analyses have been built on the elastic-perfectly plastic material model with small strain finite element formulation. In the present work, a series of newly developed heterogeneous unit cells based on large strain finite element formulation are applied to consider the effect of work hardening rate and the unit cell size on the computed limit load and failure modes. The results indicate that as the unit cell size increases, the unit cell tends to localize early. Also, we found that for the pre-work hardened materials with a strain-hardening coefficient of less than 0.1, work hardening rate has less effect on the computed limit load, but substantial impact on the calculated local strain magnitude.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In