0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Forming Limit Diagrams for Aluminum Alloy Sheet Using Finite Element Analysis

[+] Author Affiliations
Bing Li

Nuclear Safety Solutions Limited, Toronto, ON, Canada

Tim J. Nye

McMaster University, Hamilton, ON, Canada

Paper No. PVP2006-ICPVT-11-93402, pp. 369-377; 9 pages
doi:10.1115/PVP2006-ICPVT-11-93402
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 2: Computer Technology
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4753-5 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

Prediction of forming limit diagram (FLD) for aluminum alloy sheet using finite element analysis without implementing pre-defined geometrical imperfections or material imperfections was studied. The limit strains of the FLD were determined by applying a new proposed localization criterion in the dome stretching test. The elements just outside the necking area, where their major and minor principal strains have no simultaneous change after localized necking happens, were chosen as the reference elements for measurement of limit strains. Simulations were carried out for various strain paths ranging from balanced biaxial stretching to uniaxial stretching. The effects of material properties, sheet thickness, anisotropic parameter and friction coefficient at the sheet punch interface on the locus of FLD were investigated. It was found that the material yield stress and average anisotropic parameter value has almost no effect on forming limits; larger strain-hardening exponent and higher sheet thickness result in higher level of forming limit strains; the friction coefficient has little influence on the locus of FLD but does affect the strain path taken during the deformation. The predicted FLD of AA 5182-O was compared with an experimentally determined FLD and very good agreement has been achieved. It was demonstrated that forming limit diagrams can be predicted by the finite element method without requiring any assumed geometric or material imperfections in the numerical model.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In