Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Relaxation and New Periodic Symmetry Technique for Simulating Interactions Between Dislocations

[+] Author Affiliations
Li Pan, Marek Niewczas

McMaster University, Hamilton, ON, Canada

Paper No. PVP2006-ICPVT-11-93315, pp. 361-367; 7 pages
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 2: Computer Technology
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4753-5 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME


Studies of the interaction between two edge dislocations have been carried out by coupled Dynamic Relaxation (DR) technique, the Embedded Atom method (EAM) potential function and a newly developed periodic symmetry method. The effects of boundary conditions and external tractions are examined for the case of edge dislocations with the same or opposite Burgers vectors gliding on physically the same planes, and for dislocations with opposite Burgers vectors gliding on parallel planes. The results show that as expected, edge dislocations dissociate into Shockley partials to minimize their energy. Depending upon the sign of the Burgers vector of component dislocations, various defect configurations are obtained after the relaxation. A more stable defect configuration replaces the well-known structure of the perfect dipole when the distance between the slip planes decreases. This leads to the formation of faulted dipoles in Z configuration. The relaxation results depend upon parameters such as dipole height, initial dipole configuration and also external tractions applied to the system. These parameters together with the atomistic mechanism of transformation of perfect dipole into the Z dipole are studied. The suitability of the technique for simulating complex defect structures in crystalline material is discussed.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In