Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Insect Filiform Hair Motion Using the Penalty Immersed Boundary Method

[+] Author Affiliations
Tomáš Gedeon, Jonas Mulder-Rosi

Montana State University, Bozeman, MT

Jeff J. Heys, B. C. Knott

Arizona State University, Tempe, AZ

Paper No. IMECE2007-41076, pp. 1311-1318; 8 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4302-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


Many insects are able to sense their surrounding fluid environment through induced motion of their filiform hairs. The mechanism by which the insect can sense a wide range of input signals using the canopy of filiform hairs of different length and orientation is of great interest. Most of the previous filiform hair models have focused on a single, rigid hair in an idealized air field. We have developed [1] a model for a canopy of filiform hairs that are mechanically coupled to the surrounding air. The model equations are based on the penalty immersed boundary method. The key difference between the penalty immersed boundary method and the traditional immersed boundary method is the addition of forces to account for density differences between the immersed solid (the filiform hairs) and the surrounding fluid (air). In this work we validate the model by comparing the model predictions to experimental results on cricket Acheta domestica cercal system.

Copyright © 2007 by ASME
Topics: Motion , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In