Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Study of Dense Layered Nano-Energetic Materials

[+] Author Affiliations
Navid Amini Manesh, Kevin R. Coffey, Ranganathan Kumar

University of Central Florida, Orlando, FL

Paper No. IMECE2007-43670, pp. 1189-1197; 9 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A and B
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4302-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials. The energy density of MIC nanocomposite materials is much higher than that of conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses, to vary the heat loss during the reaction of the MIC material. The in-plane speed of propagation of the reaction was experimentally determined using a time of-flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with thickness greater than 1 μm. Different substrate material such as glass was also used. A numerical analysis of the thermal transport from the reacting film shows that the temperature profiles become self similar for substrate thicknesses larger than 1 μm., the maximum temperature stays constant for both silica and composite silica/silicon substrates, showing the effectiveness of the composite substrates to control the heat lost from the reaction, both experimentally and numerically.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In