0

Full Content is available to subscribers

Subscribe/Learn More  >

A Discussion on the Performance of Continuum Plasticity Models for Fatigue Lifetime Assessment Based on the Local Strain Appraoch

[+] Author Affiliations
Abílio M. P. De Jesus, Alfredo S. Ribeiro

University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

Hélder F. S. G. Pereira

UCVE - IDMEC - Pólo FEUP, Porto, Portugal

António A. Fernandes

University of Porto, Porto, Portugal

Paper No. PVP2006-ICPVT-11-93460, pp. 225-235; 11 pages
doi:10.1115/PVP2006-ICPVT-11-93460
From:
  • ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
  • Volume 1: Codes and Standards
  • Vancouver, BC, Canada, July 23–27, 2006
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4752-7 | eISBN: 0-7918-3782-3
  • Copyright © 2006 by ASME

abstract

This paper presents a discussion on the performance of continuum plasticity models for fatigue lifetime assessment according to the local strain approach. Several cyclic plasticity phenomena such as the cyclic hardening/softening, ratchetting, cyclic mean stress relaxation and non-proportional cyclic hardening require, in general, specialized continuum plasticity models. Continuum plasticity models, available in commercial finite element codes (e.g. ANSYS® ), with linear, multilinear and nonlinear kinematic hardening are identified using the experimental information available for a pressure vessel steel — the P355NL 1 steel. The potentialities of these plasticity models to describe the material cyclic behaviour are discussed, limiting the discussion to proportional loading. The plasticity models are applied to evaluate the strain ranges and mean stresses of a nozzle-to-plate connection. Two analysis strategies are applied to extract the strain ranges, namely the Twice Yield (TY) and the Cycle-by-Cycle (CBC) methods. The mean stress is only evaluated using the CBC method since the TY method has been proposed only for evaluation of the strain ranges. It is demonstrated that the TY and CBC methods gives similar results for the linear and multilinear kinematic hardening plasticity models. The plasticity model can have an important effect on the evaluation of the mean stresses and thus on predicted strain-life results, if mean stress effects are taken into account in the local strain approach. Finally, the calculated strain ranges and mean stresses are used in the evaluation of the fatigue life of the nozzle-to-plate connection using a local strain approach, and predictions are compared with available experimental results. The effect of the mean stress is important for long lives and is very dependent on the continuum plasticity model and on the number of cycles modelled in the CBC extraction method. Although differences are observed in the estimation of the strain ranges, using the several plasticity models, relatively small differences in fatigue life estimations were resulted.

Copyright © 2006 by ASME
Topics: Plasticity , Fatigue

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In