0

Full Content is available to subscribers

Subscribe/Learn More  >

Meshless Local Petrov-Galerkin (MLPG) Method for Incompressible Viscous Fluid Flows

[+] Author Affiliations
Mohammad Haji Mohammadi

Sharif University of Technology, Tehran, Iran

Paper No. FEDSM2006-98426, pp. 369-379; 11 pages
doi:10.1115/FEDSM2006-98426
From:
  • ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering
  • Volume 2: Fora
  • Miami, Florida, USA, July 17–20, 2006
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4751-9 | eISBN: 0-7918-3783-1
  • Copyright © 2006 by ASME

abstract

In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of unsteady incompressible flows, governed by the Navier–Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based only on a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction eq. (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Moving Least Square approximation (MLS) is employed in shape function construction for approximation of a gauss point. Due to dissatisfaction of kronecker delta property in MLS approximation, the penalty method is employed to enforce the essential boundary conditions. In order to overcome instability and numerical errors encountering in convection dominant flows, a new upwinding scheme is used to stabilize the convection operator in the streamline direction (as is done in SUPG). In this upwinding technic, instead of moving subdomains the weight function is shifted in the direction of flow. The efficiency, accuracy and robustness are demonstrated by some test problems, including the standard driven cavity together with the driven cavity flow in an L shaped cavity and flow in a Z shaped channel. The comparison of computational results shows that the developed method is capable of accurate resolution of flow fields in complex geometries.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In