0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of a Resonating Free Liquid-Piston Engine Compressor

[+] Author Affiliations
José A. Riofrio, Eric J. Barth

Vanderbilt University, Nashville, TN

Paper No. IMECE2007-42369, pp. 239-246; 8 pages
doi:10.1115/IMECE2007-42369
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 4: Design, Analysis, Control and Diagnosis of Fluid Power Systems
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4298-3 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

This paper presents the design and simulation of a resonating free liquid-piston compressor (FLPC) equipped with a separated combustion chamber. The FLPC is a proposed device that utilizes combustion of a hydrocarbon fuel to compress air into a high-pressure supply tank, thus potentially serving as a portable power supply candidate for untethered pneumatic systems of human-scale power. The energetic merits of the FLPC concept have been outlined and demonstrated in previous work, and this new design aims at meeting its intended power density, all while maintaining an adequate energy density in a compact and simple device. In this new design, the free “piston” consists of a slug of water (or another incompressible fluid) trapped between two high-stiffness elastomeric diaphragms, thus providing perfect blow-by sealing and near zero friction, while adequately presenting the dynamic elements needed for smooth, continuous operation at desirable resonant frequencies. The device is essentially a tuned resonator whereby the inertia of the liquid piston and the elasticity of the diaphragms are selected to achieve a given resonant frequency. The passive dynamics of the engine are exploited to achieve efficiency through over-expansion, and to enable a return stroke with the small investment made in elastic energy with each power stroke. Additionally, the implementation of a separated combustion chamber – along with built-in actuated, high-flow intake and exhaust valves – ensures the feasibility of such desirable frequencies by decoupling the injection dynamics from the free-piston dynamics. The design and implementation of the device is shown, and simulated results are discussed.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In