Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of Hydraulic Pumping Units

[+] Author Affiliations
Guixi Li, Rujian Ma, Jungang Wang

University of Jinan, Shandong, China

Paper No. IMECE2007-42798, pp. 55-58; 4 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 4: Design, Analysis, Control and Diagnosis of Fluid Power Systems
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4298-3 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


The dynamic performance of hydraulic beam pumping units was analyzed in this paper by using the theory of mechanical vibrations. The house-head movement of the pumping unit is mainly uniform, except the alternation period of upper- and down-strokes. Under the action of the house-head movement, the vibration of the system, the sucker-rod and, furthermore, the dynamic stress will be induced. The results indicate that the movement of the downhole pump includes two parts. One is the movement following the horse-head. The other is the dynamic response excited by the support movement. When the parameters of the system are selected reasonably, over-stroke of the pump will appear. This is because the movement of the hydraulic piston obeys a particular law. The maximum displacement increases, and the maximum dynamic stress decreases with depth. The changing of maximum dynamic stress with depth obeys quadratic law.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In