Full Content is available to subscribers

Subscribe/Learn More  >

A Study of PLA Crystallization During Solid-State Foaming

[+] Author Affiliations
Xiaoxi Wang, Vipin Kumar, Wei Li

University of Washington, Seattle, WA

Paper No. IMECE2007-42547, pp. 53-59; 7 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4297-5 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


Polylactic acid (PLA) is a biodegradable semi-crystalline thermoplastic polymer that can be used in many applications such as tissue engineering scaffolds and packaging. The crystallinity of PLA is an important factor that affects its process-ability, mechanical strength, and biodegradability. The solid-state foaming of semi-crystalline PLA has been a subject of recent investigations. In this paper, crystallization through out the solid state foaming process was studied. It was found that the crystallization reaches the equilibrium once the gas sorption reaches the equilibrium. There are two main factors that will affect the PLA crystallization: gas sorption during the saturation stage and the heating and stretching during the foaming stage. Within the range of 2 to 5 MPa saturation pressures and 60 to 100 °C foaming temperatures, a maximum crystallinity of approx. 25% was observed in the foamed PLA. Effects of stretching and foaming temperature on crystallinity of foamed specimens were also investigated.

Copyright © 2007 by ASME
Topics: Crystallization



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In