Full Content is available to subscribers

Subscribe/Learn More  >

Guidelines for Controlling Pore Radii From Nonlinear Analysis of a Two-Dimensional Model of Electroporation

[+] Author Affiliations
Jonathan P. Cranford, Xiaopeng Zhao, Wanda Krassowska

Duke University, Durham, NC

Paper No. IMECE2007-43585, pp. 307-308; 2 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4296-7 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


Electroporation, in which strong electric pulses create transient pores in the cell membrane, is commonly used as a method for delivering molecules into cells. One of the pulsing protocols used in practice, a two-pulse protocol, creates a certain number of pores (Num) with a short, large electric pulse, and then controls the pore size with a second, smaller electric pulse of strength V0 . This study uses nonlinear analysis of an electroporation model to determine guidelines for the magnitude of V0 and Num that will produce pores of a desired radius (r). Analysis reveals that for Num between 85 and 3190, number and type of fixed points (FPs) depend on Num and V0 . For this range of Num, there exist two stable FPs and one unstable FP, and increasing V0 beyond a certain threshold (V0 th ) drives the system to the FP with larger r. V0 th can be fit to a function that is linearly dependent on Num. This study shows that for a given Num created by the first pulse, choice of V0 will allow the experimenter to optimize pore size for a specific application.

Copyright © 2007 by ASME
Topics: Electroporation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In