Full Content is available to subscribers

Subscribe/Learn More  >

A Model-Independent Technique for Eigenvalue Identification and Its Application in Predicting Cardiac Alternans

[+] Author Affiliations
Xiaopeng Zhao, David G. Schaeffer, Wanda Krassowska, Daniel J. Gauthier

Duke University, Durham, NC

Paper No. IMECE2007-43380, pp. 301-302; 2 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4296-7 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


Predicting cardiac alternans is a crucial step toward detection and prevention of ventricular fibrillation, a heart rhythm disorder that kills hundreds of thousands of people in the US each year. According to the theory of dynamical systems, cardiac alternans is mediated by a period-doubling bifurcation, which is associated with variations in a characteristic eigenvalue. Thus, knowing the eigenvalues would allow one to predict the onset of alternans. The existing criteria for alternans either adopt unrealistically simple assumptions and thus produce erroneous predictions or rely on complicated intrinsic functions, which are not possible to measure experimentally. In this work, we present a model-independent technique to estimate a system’s eigenvalues without requirements on the knowledge of the underlying dynamic model. The method is based on principal components analysis of a pseudo-state space; therefore, it allows one to compute the dominant eigenvalues of a system using the time history of a single measurable variable, e.g. the transmembrane voltage or the intracellular calcium concentration in cardiac experiments. Numerical examples based on a cardiac model verify the accuracy of the method. Thus, the technique provides a promising tool for predicting alternans in real-time experiments.

Copyright © 2007 by ASME
Topics: Eigenvalues



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In