Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Modeling of Brain Tissue Retraction for Neurosurgical Simulation

[+] Author Affiliations
Kazuhiko Adachi, Yoshiaki Inoue, Hiroshi Kanki, Atsushi Fujita, Eiji Kohmura

Kobe University, Kobe, Hyogo, Japan

Paper No. IMECE2007-41772, pp. 221-227; 7 pages
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4296-7 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME


The simulation capability for intraoperative brain tissue deformation by the surgical procedures using computational Finite Element analysis is demonstrated in this paper. Our research group has been developing the patient-specific three-dimensional Finite Element brain deformation model consisting of precise anatomical structures, i.e., brain parenchyma with both gyri and sulci on the surface, falx cerebri, and tentorium, in order to evaluate brain shift during navigation surgery without additional acquisition of intraoperative imaging. In this study, both gray and white matters of the brain tissues were modeled as homogeneous nonlinear hyper-viscoelastic material. The falx cerebri with tentorium was modeled as linear elastic material which is much stiffer than the brain tissue. The skull was modeled as a rigid body. In the numerical simulation, the computation of the intraoperative cerebellum tissue deformation due to retraction by spatula for posterior fossa surgery was conducted by ABAQUS/Explicit. The illustrative results successfully demonstrate the interaction between brain tissue and spatula.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In