0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Blast-Head Interactions to Study Traumatic Brain Injury

[+] Author Affiliations
M. Sotudeh Chafi, G. Karami, M. Ziejewski

North Dakota State University, Fargo, ND

Paper No. IMECE2007-41629, pp. 211-220; 10 pages
doi:10.1115/IMECE2007-41629
From:
  • ASME 2007 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Seattle, Washington, USA, November 11–15, 2007
  • Conference Sponsors: ASME
  • ISBN: 0-7918-4296-7 | eISBN: 0-7918-3812-9
  • Copyright © 2007 by ASME

abstract

This paper presents a methodology for predicting the mechanical damage inflicted on the brain by a high explosive (HE) detonation and leading to traumatic brain injury (TBI). A brain model, with its complexity, is used in the computational procedure. The processes of HE detonation and shock propagation in the air, as well as their interaction with the head, are modeled by an Arbitrary Lagrangian Eulerian (ALE) multi-material formulation, together with a penalty-based fluid/structure interaction algorithm. This methodology provides intracranial pressure and maximum shear stress within the microscale time frame for this highly dynamic phenomenon. Two scenarios are simulated. In one scenario, the brain is in close proximity to a 1lb trinitrotoluene (TNT) explosion, and the other to a 0.5lb explosion. The resulting countercoup intracranial pressure-time histories, from the 1 lb TNT explosive scenario, demonstrates that pressure falls below −100 kPa. This can cause cavitation bubbles and damage to the brain tissue. The simulations also predict that the areas of high pressure and shear stress concentration are consistent with those of clinical observations. These resulted intracranial pressure and shear stress responses are the parameters to examine against injury criterions thresholds.

Copyright © 2007 by ASME
Topics: Simulation , Brain , Wounds

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In