Full Content is available to subscribers

Subscribe/Learn More  >

Wind Shear and Turbulence Effects on Rotor Fatigue and Loads Control

[+] Author Affiliations
A. J. Eggers, Jr., R. Digumarthi, K. Chaney

RANN Inc., Palo Alto, CA

Paper No. WIND2003-863, pp. 225-234; 10 pages
  • ASME 2003 Wind Energy Symposium
  • ASME 2003 Wind Energy Symposium
  • Reno, Nevada, USA, January 6–9, 2003
  • Conference Sponsors: ASME
  • ISBN: 1-56347-594-4


The effects of wind shear and turbulence on rotor fatigue and loads control are explored for a large horizontal axis wind turbine in variable speed operation from 4 to 20 m/s. Two and three blade rigid rotors are considered over a range of wind shear exponents up to 1.25 and a range of turbulence intensities up to 17%. RMS blade root flatwise moments are predicted to be very substantially increased at higher wind shear, and resultant fatigue damage is increased by many orders of magnitude. Smaller but similar trends occur with increasing turbulence levels. In-plane fatigue damage is driven by 1P gravity loads and exacerbated by turbulence level at higher wind speeds. This damage is higher by one to two orders of magnitude at the roots of the three blade rotor. Individual blade pitch control of fluctuating flatwise moments markedly reduces flatwise fatigue damage due to this source, and to a lesser degree the in-plane damage due to turbulence. The same is true of fluctuating rotor torque moments driven by turbulence and transmitted to the drive train. Blade root moments out of the plane of rotation aggregate to create rotor pitching and yawing moments transmitted to the turbine structure through the drive train to the yaw drive system and the tower. These moments are predicted to be relatively insensitive to turbulence level and essentially proportional to the wind shear exponent for the two blade rotor. Fluctuating moments are substantially reduced with individual blade pitch control, and addition of a teeter degree of freedom should further contribute to this end. Fluctuating pitching and yawing moments of the three blade rotor are substantially less sensitive to wind shear, more sensitive to turbulence level, and substantially lower than those for the two blade rotor. Mean rotor torque and hence power are essentially the same for both rotors, independent of wind shear, and somewhat reduced with individual blade pitch control of fluctuating flatwise moments. The same is true of mean rotor thrust, however fluctuations in rotor thrust are substantially reduced with individual blade pitch control. It appears, on balance, that higher wind shear coupled with turbulence effects should be accounted for in the fatigue design of large, long life turbines. Much more work is required on this problem.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In