0

Full Content is available to subscribers

Subscribe/Learn More  >

The Synergistic Effect of Tool Geometry and Hard Turning vs. Grinding Processes on 3D Surface Micro Topography

[+] Author Affiliations
R. A. Waikar, Y. B. Guo

University of Alabama, Tuscaloosa, AL

Paper No. MSEC2007-31086, pp. 975-983; 9 pages
doi:10.1115/MSEC2007-31086
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

Surface topography induced by precision machining is critical for component performance. This paper is to study the synergistic effects of work materials, machining processes, and tool geometry on the geometrical surface quality. Four representative surface topographies of turned and ground surfaces were prepared at “extreme” machining conditions (gentle and abusive) and compared in terms of 3-dimensional (3D) surface features of amplitude, area and volume, spatial, and hybrid parameters. The 3D surface topography maps revealed the anisotropic and repeatable nature of a turned surface which was in sharp contrast with the random and isotropic nature of a ground surface. In general, a gentle turned surface has higher values of amplitude parameters (arithmetic mean, root mean square, maximum height of summits, maximum depth of valleys, and ten-point height) than an abusively turned surface, whereas the opposite was true for the ground counterparts. Only the gentle ground surface has a negative skewness which means that the topography distribution is more biased towards the valley side. The larger kurtosis value of the abusively ground surface implies a more peaked surface topography. The gentle ground and abusively turned surfaces have a much larger bearing area ratio and therefore better bearing capacity than the gentle turned and abusively ground ones. The abusively ground surface has higher fluid retainability than other surfaces in terms of mean void volume.

Copyright © 2007 by ASME
Topics: Grinding , Turning , Geometry

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In