0

Full Content is available to subscribers

Subscribe/Learn More  >

A Parametric Study on Selective Ultrasonic Foaming of Porous Polymer for Biomedical Applications

[+] Author Affiliations
Hai Wang, Wei Li

University of Washington, Seattle, WA

Paper No. MSEC2007-31184, pp. 681-688; 8 pages
doi:10.1115/MSEC2007-31184
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

A selective ultrasonic foaming (SUF) process was developed to fabricate porous polymer for biomedical applications. The method employs a high intensity focused ultrasound (HIFU) transducer to selectively heat and implode gas-impregnated polymers. This acoustic method is solvent-free and capable of creating interconnected pores that have various topographical features at different length scales. In this paper, we investigate the effects of major process parameters of the SUF process, including the ultrasound power, scanning speed, and the specimen gas concentration. The pore size and interconnectivity of the porous structure were analyzed. The microstructures were characterized using the scanning electron microscopy (SEM) and a dye penetration test. It was found that the scanning speed of the ultrasound had a significant effect on the pore size control, and that low gas concentration was a necessary condition for interconnected porous structures.

Copyright © 2007 by ASME
Topics: Polymers , Biomedicine

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In