Full Content is available to subscribers

Subscribe/Learn More  >

Augmented Reality Enhanced Nanomanipulation by Atomic Force Microscopy With Local Scan

[+] Author Affiliations
Guangyong Li

University of Pittsburgh, Pittsburgh, PA

Lianqing Liu, Ning Xi

Michigan State University, East Lansing, MI

Paper No. MSEC2007-31145, pp. 643-652; 10 pages
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME


Atomic Force Microscope (AFM) has been used to manipulate nano-objects for more than a decade. However, it is still in the infant stage to serve as a manufacturing tool for fabrication of nanodevices. The major hindrance is the low efficiency due to the absence of visual feedback, positioning errors, and losing objects during manipulation. The lack of visual feedback can be solved by integrating an augmented reality interface into an AFM based nano-robotic system. Through the augmented reality interface, the operator can manipulate the nano-objects and simultaneously observe the real-time changes of the nano-environment. Position errors caused by thermal drift and nonlinearity of piezoactuators often lead the AFM tip to a wrong position and in turn miss the nano-objects. Due to the small touching area between AFM tip and the object, the tip often slips over or slips aside the nano-object during manipulation. All these problems can be solved by introducing a local scan mechanism to the AFM based robotic system. The local scan strategies will improve the reliability of the visual feedback, therefore, significantly improve the efficiency of AFM based nano-manipulation. In this paper, the augmented reality interface is briefly introduced. And then the local scan strategies are proposed to eliminate the positioning errors, relocate the actual position of nano-objects, and find back the nano-objects if they are lost during manipulation. The paper finally demonstrates that single carbon nanotube (CNT) based nano-sensors can be fabricated by the AFM based nano-robotic system assisted by local scan.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In