Full Content is available to subscribers

Subscribe/Learn More  >

Process Yield Improvement Through Optimum Design of Fixture Layouts in 3D Multi-Station Assembly Systems

[+] Author Affiliations
T. Phoomboplab

University of Wisconsin - Madison, Madison, WI

D. Ceglarek

University of Warwick, Coventry, UK

Paper No. MSEC2007-31192, pp. 603-614; 12 pages
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME


This paper presents a new approach to improve process yield by determining an optimum set of fixture layouts for a given multi-station assembly system which can satisfy: (i) parts and subassemblies locating stability in each fixture layout; and (ii) fixture system robustness against environmental noises in order to minimize product dimensional variability. Three major challenges of the multi-stage assembly processes are addressed: (i) high-dimensional design space; (ii) large and complex design space of each locator; and (iii) the nonlinear relations between locator positions, also called Key Control Characteristics, and Key Product Characteristics. The proposed methodology conducts two-step optimization based on the integration of Genetic Algorithm and Hammersley Sequence Sampling. First, Genetic Algorithm is used for design space reduction by determining the areas of optimal fixture locations in initial design spaces. Then, Hammersley Sequence Sampling uniformly samples the candidate sets of fixture layouts from the areas predetermined by GA for the optimum. The process yield and part instability index are design objectives in evaluating candidate sets of fixture layouts. An industrial case study illustrates and validates the proposed methodology.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In