0

Full Content is available to subscribers

Subscribe/Learn More  >

The Impact of Surface Integrity by Hard Turning vs. Grinding on Rolling Contact Fatigue

[+] Author Affiliations
A. W. Warren, Y. B. Guo

University of Alabama, Tuscaloosa, AL

Paper No. MSEC2007-31084, pp. 473-481; 9 pages
doi:10.1115/MSEC2007-31084
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

Hard turning and grinding are finishing processes for the manufacture of precision components such as bearings, gears, and cams. However, the effects of distinct surface integrity by hard turning vs. grinding on rolling contact life are poorly understood. Four representative surface types were prepared: as-turned, as-ground, turned and polished, and ground and polished. Surface integrity was characterized by surface topography, microstructure, and micro/nanohardness. Fatigue tests were performed with an acoustic emission sensor and the signal processing software. The amplitude of acoustic emission signal is the most stable and sensitive signal to fatigue failure. The turned surface may have a longer life (>84%) than the ground one with equivalent surface finish.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In