0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Highly Miniaturized PQT-Sensor for Monitoring and Diagnosing of Pneumatic Systems

[+] Author Affiliations
Christoph Sosna, Rainer Buchner, Walter Lang, Wolfgang Benecke

University of Bremen, Bremen, Germany

Christian Boehm

Festo Corporation, Hauppauge, NY

Josef Binder

Festo AG & Co. KG, Esslingen-Berkheim, Germany

Paper No. MSEC2007-31017, pp. 455-464; 10 pages
doi:10.1115/MSEC2007-31017
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

In this paper a feasibility study of a micromachined PQT-sensor for measurement of pressure (P), flow rate (Q), and temperature (T) for diagnostic applications in pneumatic systems is presented. As a low cost device this innovative PQT-sensor has to fulfill different kinds of criteria such as wide measuring range, fast response time, high resolution and high accuracy for diagnosing the health status of a pneumatic system. By using micro electro mechanical systems (MEMS) technologies small high-performance sensors were fabricated which fulfill all these criteria. At first, principles will be described that have been chosen for measurement of pressure, flow and temperature that will be used for the PQT-sensor. A design proposal for the sensor will be presented and verified with analytical calculations to show its applicability.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In