Full Content is available to subscribers

Subscribe/Learn More  >

Full Field Displacement Measurements of AFM Cantilevers During Loading

[+] Author Affiliations
Lee Kumanchik, Tony Schmitz

University of Florida, Gainesville, FL

Jon Pratt

National Institute of Standards and Technology, Gaithersburg, MD

John Ziegert

Clemson University, Clemson, SC

Paper No. MSEC2007-31041, pp. 381-387; 7 pages
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME


Research collaboration between the University of Florida and National Institute of Standards and Technology is focused on the development of a reference standard for atomic force microscope (AFM) cantilever stiffness calibration. The end goal is production of flexure-based artifacts that exhibit low fabrication expense, stiffness adjustability by design, insensitivity to load application point, mechanical robustness, and good reproducibility. Experimental determination of AFM cantilever spring constants is important because the measured forces are inferred from the cantilever displacement and a linear relationship between force and displacement. As a first step in this study, we have constructed a test setup that enables us to: 1) monitor AFM cantilever behavior during loading; and 2) record the shape of the cantilever under test during contact to better understand boundary conditions. The fundamental metrology tool employed by the test setup is a three-dimensional optical profiler, or scanning white light interferometer. By locating the cantilever (and test surface) within the measurement area of the profiler, we are able to record “snapshots” of the cantilever shape under various loading conditions. Given the deflected shape, we can make comparisons between the actual shape and the profile that would be obtained by ideal (fixed-free) boundary conditions. Results for cantilevers with various stiffness values (spanning four orders of magnitude) are presented and comparisons with ideal deflected shapes are provided.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In