0

Full Content is available to subscribers

Subscribe/Learn More  >

The Use of Internal State Variable Plasticity Model via a User Subroutine to Evaluate the Effect of Materials Testing Modes on Hard Machining Simulation

[+] Author Affiliations
S. Anurag, Y. B. Guo

University of Alabama, Tuscaloosa, AL

M. F. Horstemeyer

Mississippi State University, Starkville, MS

Paper No. MSEC2007-31087, pp. 249-257; 9 pages
doi:10.1115/MSEC2007-31087
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

Hard machining involves large strain, high strain rate, high temperatures, strain rate/temperature coupling, and potential loading history effects. The accuracy of characterizing the dynamic mechanical behavior in hard machining using any constitutive models is strongly affected by materials testing data in which a constitutive model is fitted. Tension or compression tests have been widely used to approximate material properties in various manufacturing processes. However, it has been a critical question whether tension or compression test should be utilized for capturing the true nature of material deformations in a hard machining process. In this study, the influences of two material testing modes on mechanical behavior of AISI52100 steel (62 HRc) were investigated using the internal state variable (ISV) plasticity model. Twenty material constants have been found by nonlinear fitting the ISV plasticity model to the base line test data obtained from each deformation mode. To understand the true nature of hard turning mechanics, a numerical model that incorporate the internal state variable plasticity model via a material user subroutine has been developed with the material constants from the compression and tension tests. A global material failure/damage evolution model was implemented to simulate chip formation which solely depends on the material deformation state. Orthogonal hard turning experiments have been performed to validate the numerical model. It has shown that the material testing modes have profound effects on some materials constants of the ISV model. The stress sensitivity study to ISV model parameters has identified the critical material constants for reflecting the nature of material deformation. The different testing modes have significant influence on the material constants associated with isotropic hardening rather than kinematic hardening. The numerical and experimental results have shown that the material constants from the compression test capture the true nature of a hard machining process. The compression mode of material deformation prevails in hard machining.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In