0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Hybrid Micro/Nano-Machining

[+] Author Affiliations
M. Rahman, A. B. M. A. Asad, Y. S. Wong

National University of Singapore, Singapore

Takeshi Masaki

Tohoku University, Sendai, Miyagi, Japan

H. S. Lim

Mikrotools Pte Ltd., Singapore

Paper No. MSEC2007-31009, pp. 197-209; 13 pages
doi:10.1115/MSEC2007-31009
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

There is a growing demand for industrial products with not only increased number of functions, but also of reduced dimensions, higher dimensional accuracy and better surface finish. Micro/nano-machining is the most promising technology for the production of such miniaturized parts and components. Components for MEMS are basically produced using processes from semiconductor technology which impels the fabrication process to be limited to a few semiconductor materials like silicon and their compounds, or requires expensive facilities. Hybrid micromachining processes that combine conventional and non-conventional micromachining have the capability to fabricate high-aspect ratio microstructures with paramount dimensional accuracy. In order to achieve meaningful implementation of micro/nano machining techniques, our research efforts seek to address three important areas; namely (a) development of machine tool capable of hybrid micromachining, (b) process control and (c) process development to achieve necessary accuracy and quality. An integrated effort in these areas has resulted in successful fabrication of micro structures that is able to meet the miniaturization demands of the industry. This paper presents a few tool-based approaches integrating micro-EDM, micro EDG, micro-turning and micro-grinding to produce miniature components. This paper also describes the features and aspects of miniaturized multi-process machine tool that provides the capability of hybrid micromachining.

Copyright © 2007 by ASME
Topics: Machining

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In