0

Full Content is available to subscribers

Subscribe/Learn More  >

Manufacture and Characterisation of Bioceramic Tissue Engineering Scaffolds Produced by Selective Laser Sintering

[+] Author Affiliations
K. Xiao, J. A. Dyson, D. J. Wood

University of Leeds, Leeds, UK

K. W. Dalgarno

Newcastle University, Newcastle, UK

P. Genever

University of York, York, UK

R. D. Goodridge

Loughborough University, Leicestershire, UK

C. Ohtsuki

Nagoya University, Nagoya, Japan

Paper No. MSEC2007-31031, pp. 83-90; 8 pages
doi:10.1115/MSEC2007-31031
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

Currently there is no adequate bone replacement available that combines a long implant life with complete integration and appropriate mechanical properties. This paper reports on the use of human mesenchymal stem cells (MSCs) to populate porous bioceramic scaffolds produced by selective laser sintering (SLS) to create bespoke bioactive bone replacement structures. Apatite-wollastonite glass ceramic was chosen for use in this study because of its combination of excellent mechanical and biological properties, and has been processed using an indirect SLS approach. Process maps have been developed to identify process conditions for the SLS stage of manufacture and an optimised furnace cycle for the material has been developed to ensure that the required material phases for bioactivity are present in the manufactured scaffold. Results from tissue culture with the MSC’s on the scaffolds (using confocal and scanning electron microscopy) show that MSCs adhere, spread and retain viability on the surface, and penetrate into the pores of apatite wollastonite (A-W) glass ceramic scaffolds over a 21 day culture period. The MSC’s also show strong indications of osteogenesis, indicating that the MSC’s are differentiating to osteoblasts. These results indicate good biocompatibility and osteo supportive capacity of SLS generated A-W scaffolds and excellent potential in bone replacement applications.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In