0

Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of Biomimetic Scaffolds With Well-Defined Pore Geometry by Fused Deposition Modeling

[+] Author Affiliations
Esmaiel Jabbari, David N. Rocheleau, Weijie Xu, Xuezhong He

University of South Carolina, Columbia, SC

Paper No. MSEC2007-31011, pp. 71-76; 6 pages
doi:10.1115/MSEC2007-31011
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

It is well established that the pore size and distribution affect the rate of cell migration and the extent of extracellular matrix formation. The objective of this work was to develop a process for fabrication of biodegradable and shape-specific polymeric scaffolds with well-defined pore geometry, functionalized with covalently attached bioactive peptides, for applications in tissue regeneration. We have used the Fused Deposition Modeling (FDM) RP technology to fabricate degradable and functional scaffolds with well-defined pore geometry. Computer aided design (CAD) using SolidWorks was used to create models of the cubic orthogonal geometry. The models were used to create the machine codes necessary to build the scaffolds with FDM with wax as the build material. A novel biodegradable in-situ crosslinkable macromer, poly(lactide-co-glycolide fumarate) or PLGF, mixed with reactive functional peptides was infused in the scaffold and allowed to crosslink. The scaffold was then immersed in a hydrocarbon solvent to remove the wax, leaving just the PLGF behind as the support material dissolved. The pore morphology of the PLGF scaffold was imaged with micro-computed tomography and scanning electron microscopy. Cellular function in the PLFG scaffolds with well-defined pore geometry was studied with bone marrow stromal cells isolated from rats. Results demonstrate that the scaffolds support homogeneous formation of mineralized tissue.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In